

Enabling Smart Water to make Indian Cities Sustainable and Carbon Neutral

K. ASHOK NATARAJAN National Task Force Member Ministry of Housing and Urban

UNIQUE CHALLENGES IN URBAN WATER SECTOR

- Utilities don't exist or are weak
- Operating cost recovery is low
- Current service levels are poor, with water supply intermittent and often unknown
- Low commercial and staff efficiency
- Asset condition is poor and largely unknown
- Non revenue water (NRW) is unknown and often underestimated
- Capital expenditure to rehabilitate network is large and unknown
- Poor hydraulic design of networks
- Population growth is high but not clear
- Where population will live is unclear
- Capital expenditure planning is weak and financing sources uncertain
- Divided responsibility for city and periphery for distribution and bulk supply

MARKET CHARACTERISTICS

- Indian Metros are rated poorly with respect to hours of water supply per day among top 27 Asian cities.
 - Delhi : 4 hrs
 - Chennai : 4 hrs
 - Mumbai : 5 hrs
 - Kolkata : 10 hrs
- Barring some exceptions each city suffers from inadequate water supply, area coverage, unequal distribution and poor quality of water supply.
- Most Indian cities do not have sewerage system.
- Utility services run in to huge losses as full cost of water is not levied
- Alternative institutional arrangements Water Utilities have not made any difference
- New measures have been taken to introduce PPP and SPV to raise funds
- Smart City program makes it mandatory for cities to have O&M recovery within 5 years
- New KPI being introduced through CPHEEO (Central Public health and Environment Engineering Organization Govt of India) to bring out revised manual incorporating the new technologies in water management, O&M and PPP structures including Smart initiatives

KEY OBJECTIVES

WATER MANAGEMENT

The city vision is to provide safe and reliable water supply by

- 100% coverage in terms of quantity and quality of water supply
- incorporating a broad range of water source options
- 24x7 water supply at consumer end and installation of smart meters
- Reuse of tertiary treated water for non potable usage for commercials and Parks

SEWERAGE MANAGEMENT

- 100% collection & Treatment sewerage as per MOUD guidelines
- Complete automation of sewerage pumping stations and STP

ICT FOR WATER MANAGEMENT

Integrated Management information system

MAJOR GOVERNMENT INITIATIVES - AMRUT 2.0

Indian Government have committed to 40 Bn USD in the next 5 years .

Securing tap and sewer connections :
 To bridge the estimated gap of 2.68 crore (27 Mn)urban households
 To provide 2.64 crore (27 Mn) sewer connections/septage in 500 Cities

• Deploying Latest Technology:

To leverage latest global technologies in the field of water.

- Non –Revenue water loss of less than 20%
- Recycling used water for meeting 20% of city demand and 40% Cities Industrial demand
- Rejuvenation of water bodies
- Raising Municipal bonds and PPP contracts
- Outcome based funding
- Circular economy and water balance for each city
- Develop Coastline with small energy efficient desalination plants
- 500 Cities have been announced under this reform thus lends for application of digital solutions

The main drivers has been due to the commitment to meeting SDG goals by 2030 of Universal access to safe drinking water and sewerage, improving water quality and service standards.

REDUCING LOST REVENUES

Technical

- ✓ Poor network maintenance
- ✓ Wrong zoning
- High or irregular pressures
- ✓ Non-visible Leaks

Commercial

- ✓ Poor meter maintenance
- ✓ Inaccurate billing
- Inefficient meter readings
- Illegal, unknown or unmetered connections
- ✓ Inadequate debt management

NRW ANALYSIS

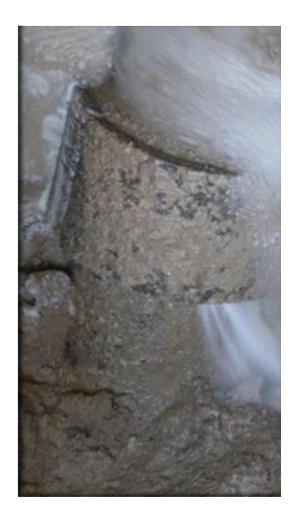
/					
Authorised Consumption			Paying	Consumption; large consumers	
		Billed metered consumption	Non-paying	Consumption; wastage; internal leakage;	
	Billed Authorised		Non paying	large consumers	
	Consumption	Billed unmetered consumption	Paying	Consumption; wastage; internal leakage;	
			r aynig	large consumers	
ğ			Non-paying	Consumption; wastage; internal leakage;	
Ті Sé				large consumers	
tho	Unbilled Authorised	Unbilled metered consumption	Goverment, public taps, etc		
Au	Consumption	Unbilled unmetered consumption	Goverment, public tap	s, etc	
			Fire fighting & testing		
		Unauthorised consumption	Illegal connect	Consumption; wastage; internal leakage	
			Unregistered connect	Consumption; wastage; internal leakage	
		Customer metering inaccuracies	Meter problems	Meter inaccur <mark>acies</mark>	
				Broken meters	
	Apparent Losses			Slow meters	
ŝ				Oversized Meters	
ŝŝ			Meter reading problems	Incorrect readings	
-00				Incomplete reading	
Water Losses				Unidentified connections	
Vat			Bad zoning & high pressures		
~			Badly corroded pipes		
		Leakage on pipes	Visible bursts		
	Real Losses		Major non-visible leaks		
			Minor leaks		
		Leakage/overflows at tanks			
		Leakage on service connections			

Global NRW Estimates

- 126 billion m³/year
- 346 million m³/day
- 77 liters per capita per day
- USD 39 billion per year

Estimated Global Carbon Emission

- 187.2 million metric tons CO² / year
- 513 thousand metric tons CO² / day
- .6% of global CO² emissions


Global CO² emissions

- 1.9% from Aviation
- 1.7% from Shipping

How do we reduce leak emissions ?

- We already know how.....
 By reducing Real Loss!
- When we reduce Real Loss, we are reducing the amount of energy and resources used in our water supply chain for water that is ultimately wasted.

Basic Water Source - no pumping and minimum chemicals	Traditional Water Systems – combination of pumping / treatment / chemicals		Desalination Sea Water Reverse Osmosis (high) and plants run by fuel oil
10%	60%	20%	10%

source IWA/WLG

CO2 in grams per m³ of water per water production source

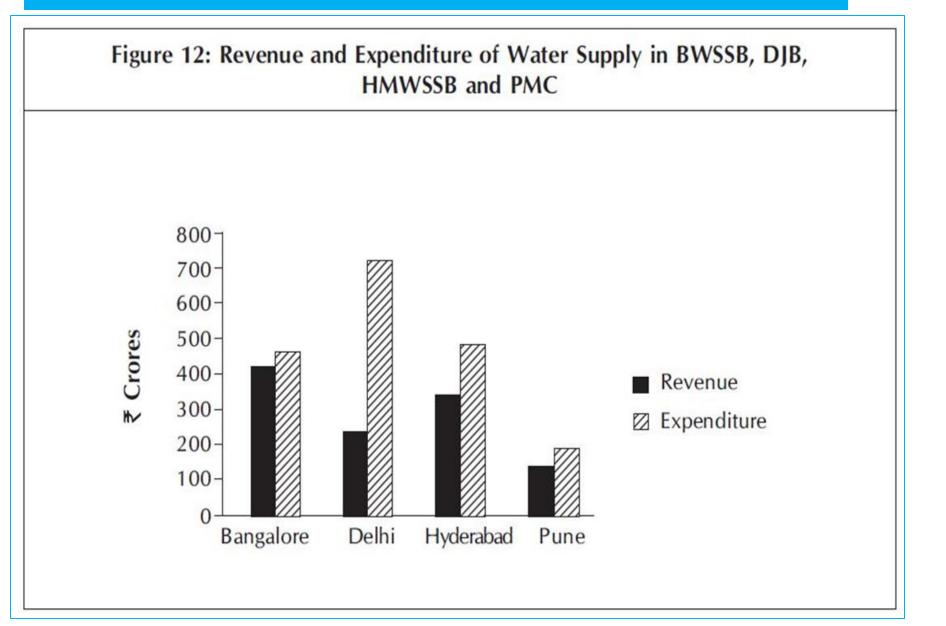
Basic Water Source - no pumping and minimum chemicals	Traditional Water Systems – combination of pumping / treatment / chemicals	Desalination Sea Water Reverse Osmosis (Average)	Desalination Sea Water Reverse Osmosis (high) and plants run by fuel oil
30 g/m ³	298 g/m ³	3170 g/m ³	6700 g/m ³

Source : IWA /WLG

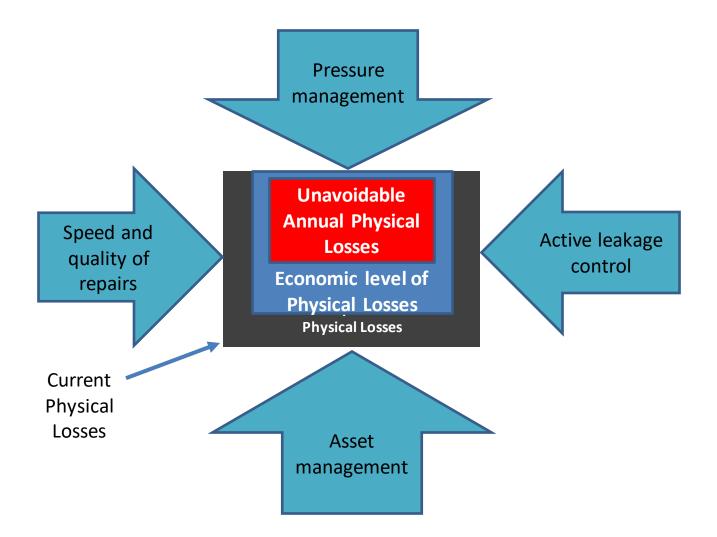
CO2 SAVINGS METRIC TONS / YEAR						
Basic Water Source	Traditional Water System	Desalinated Sea Water – Reverse Osmosis	Desalinated Sea Water – RO using Fuel Oil	TOTAL		
264,600	15,770,160	55,918,800	59,094,000	131,047,560		

This equates to .4% of global CO2 emissions Source : IWA/ WLG

CO2 OVERVIEW PER WATER SOURCE PER YEAR


Basic Water Source	Traditional Water System	Desalinated Sea Water – Reverse Osmosis	Desalinated Sea Water – RO using Fuel Oil	TOTAL
264,600	15,770,160	55,918,800	59,094,000	tons per year
10%	60%	20%	10%	% water source
30 g/m ³	298 g/m ³	3170 g/m³	6700 g/m ³	CO ² g/m ³
0.21%	12.03%	42.67%	45.09%	% of CO ²

Source : IWA/ WLG


NRW IN SELECT INDIAN CITIES WHICH HAD REFORMS

City	Bangalore	Delhi	Hyderabad	Pune
Total Input Volume (MLD)	930	3,677	1,503	1,123
Total Water Loss (MLD)	474.3	1,926.74	571.14	337
Unbilled Authorized	-	-	-	-
Consumption (MLD)	47.1	1311	156.5	104
Apparent Loss (MLD)	18.96	304.1	133.07	131.96
Real Loss (MLD)	408.24	311.6	281.57	101.04
Non-Revenue Water (%)	51	52.4	38	30
Unbilled Authorized Consumption (%)	10	68	28	31
Of Which Apparent Loss (%)	4	16	23	39
Of Which Real Loss (%)	86	16	49	30
Apparent Loss of L/ConnJDay	33.7	176.90	163.31	140.69
Real Loss of KL/Km/Day	86.87	32.45	80.44	40.84
Revenue Foregone Due to Unbilled Authorized Consumption (₹)*/Day	282,600	7,866,000	939,000	624,000
Revenue Foregone Due to Apparent Loss (₹)*/Day	113,760	1,824,600	798,420	791,760
Revenue Foregone Due to Real Loss (₹)*/Day	2,449,440	1,869,600	1,689,420	606,240
Daily Revenue Foregone (₹)	2,845,800	11,560,440	3,426,840	2,022,000
Annual Revenue Foregone (₹)	1,038,717,000	4,219,560,600	1,250,796,600	738,030,000

TYPICAL STATUS OF FINANCES OF UTILITIES

NRW Reduction Strategy – Physical Losses

Listening on each stop tap

- Must get too and from site
- Don't know if any leaks present in the region surveyed
- Low footprint if area is surveyed by foot

Lift and shift

- Movement of staff in vehicles doing lift and shift and follow up ALC activities
- Don't know if any leaks present in the region surveyed

Permanent installed equipment

• Once installed only go to alarms – reduced unnecessary vehicle usage

Satellite leakage

• Only go to AOI's - reduced unnecessary vehicle usage

Active leakage control factors affecting Carbon

Method of pipe installation	 Open cut Bored / pipe bursting
Ground type	Concrete / tarmacSand / grass
Material used	Metallic - typeNon metallic
Life expectancy 30 - 60 years	
Service pipe	MaterialRenew or use existing

Asset Management factors affecting Carbon

Installation of PRV and servicing valves

Single time installation

Type of pressure control

Chose right type of installation for best results

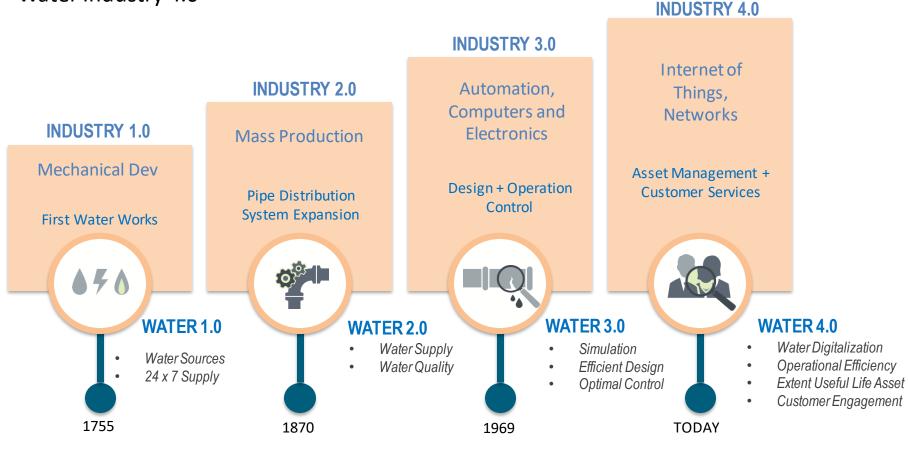
Lowest cost on Reduces losses without carbons once installendeeding to visit site

Controlled remotely and serviced annually

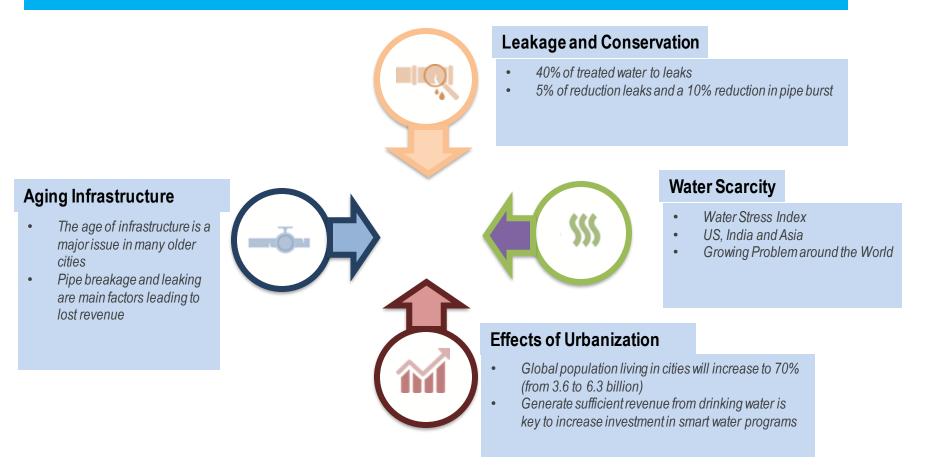
Pressure Management factors affecting Carbon

Repair quality

Quality of fittings used



Run time of leak


Speed and quality of repairs factors affecting Carbon

How water sector is transitioning

Water Industry 4.0

Market Drivers

What is a Smart Digital Water Distribution System?

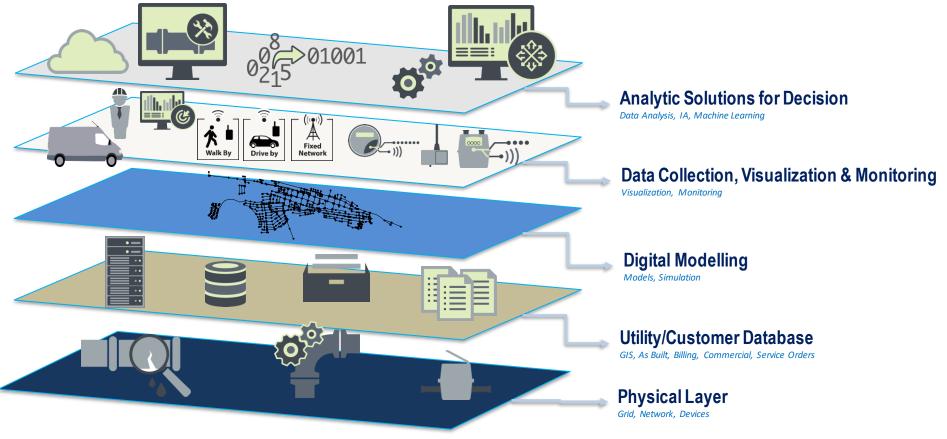
Water Digital Solution

DIGITAL PHYSICAL 3

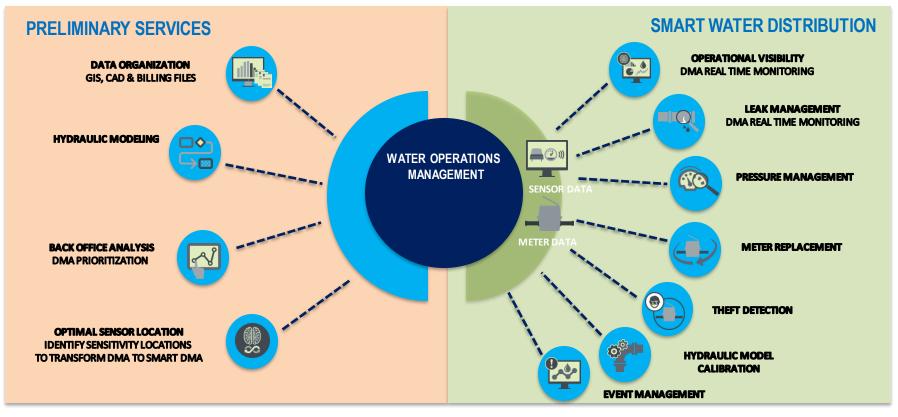
2. Analyze and Visualize

Devices and Hydraulic Sensors talk to cloud platforms to share information and visualizations of realtime data from multiple sources.

3. Decision Aid Support


Apply algorithms and automation to translate decisions and actions from the digital world to physical world

1. Establish a Digital Record


Capture information from the physical water network to create a digital record of the physical operation, water supply network, pipe assets and endpoints.

Smart solutions

• Conceptual Fundamental for Proof of Concept

WATER OPERATIONS MANAGEMENT OUTCOMES

A Transformative Initiative under 5T

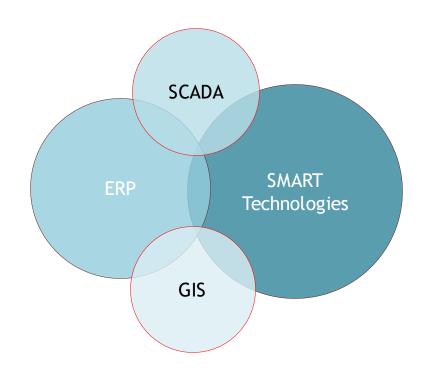
IMPLEMENTATION

- DMA Concept Planning done
- Infrastructure Condition Assessment
- Gap Closing in the Network & other Infrastructure
- 100% Replacement of existing House Connections
- Water Metering (~33,000)
- SMART Water Management
- Increased Water Quality Surveillance

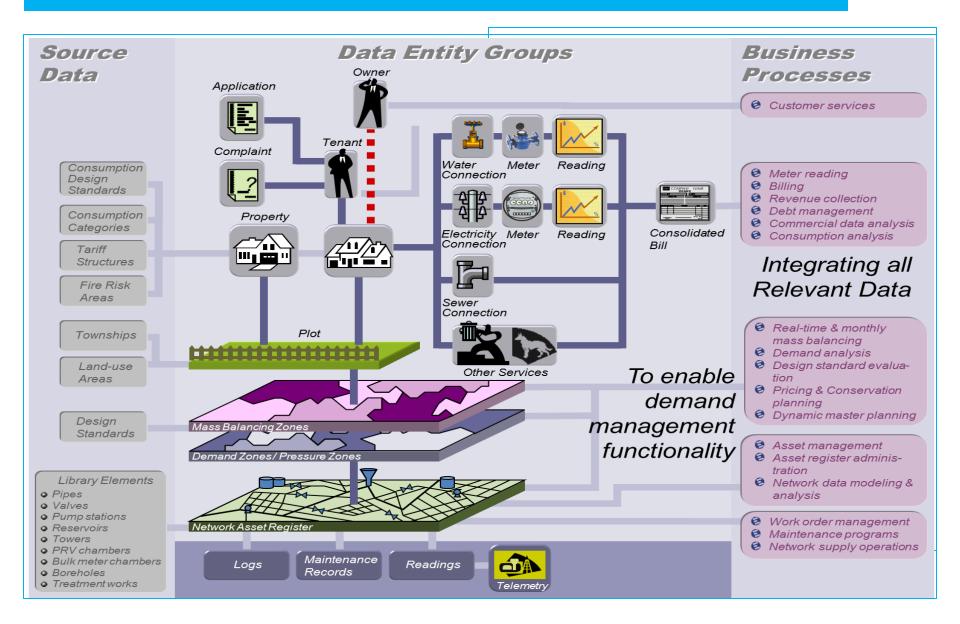
SERVICE LEVEL BENCHMARK FOR WATER SUPPLY IN PURI

SI.	Performance indicator	Targeted Benchmark	Average values in India	PURI
1	Coverage of water supply connections*	100%	70%	100%
2	Per capita supply of water	135 LPCD	114 LPCD	135 LPCD
3	Extent of metering of water connections	100%	22%	100%
4	Extent of non-revenue water (NRW)	15%	31 %*	15%
5	Continuity of water supply	24 hours	2.7 hours	24 hours
6	Quality of water supplied	100%	95%	100%
7	Consumer Complaint redressal Efficiency	80%	89%	97%
8	Cost recovery in water supply services	100%	72%	Under preparation
9	Efficiency in collection of water supply- related charges	90%	60%	100%

NON REVENUE WATER MANAGEMENT


		Billed Authorized Consumption	Billed Metered Consumption	Revenue Water
	Authorized Consumption		Billed Unmetered Consumption	
		Unbilled Authorized	Unbilled Metered Consumption	
System Input		Consumption	Unbilled Unmetered Consumption	Non
Volume (Produced or	Water	Apparent Losses	Unauthorized Consumption	Revenue
Purchased Water)			Customer Meter Inaccuracies and Data Handling Errors	Water (NRW)
	Losses	Real	Leakage in Transmission and Distribution Mains	
		Losses	Storage Leaks and Overflows from Storage Tanks	
			Service Connection Leaks up to the Meter	The second second

The Non Revenue Water in PURI reduced from 47% to 15%



FUTURE SCENARIO IN INDIA

- Addressing Utility Markets with solution-based technologies
 - Technical & Consulting Services like GIS, base line parameters study, NRW, Master Plans
 - Water Supply Information Management
 System
 - Pump house and pipeline SCADA, pump house energy optimization
 - Rehabilitation and performance-based in Smart Water implementations – DMAs, Bulk & Retail Metering, Leakage Detection asset management
 - Customer Information System
 - Management Contracts
 - Future Concession contracts with Indian JV partners

HOLISTIC APPROACH

