

Confederation of Indian Industry

New and cutting-edge Technology for Wastewater Management -Vijay Bhaskar

Water is a crucial parameter in achieving sustainability

- Ion Exchange Brief Introduction
- Waste Water-The Problem Definition
- Impact on Treatment Process design
- New technologies for Wastewater Treatment /recycle
- Conclusion

Overview of Ion Exchange India Ltd.

Research & Development

Well established in-house R&D department since 1965

Recognized by Department of Scientific and Industrial Research (DSIR), New Delhi

R&D Centers

For Chemicals at Patancheru, Telangana
For Engineered Products & System at Vashi, Maharashtra

Product application and testing centers with numerous patents to their credit
Over 10 patents
Over 100 products launched

CION EXCHANGE

Domestic Footprint

Membrane Manufacturing-HYDRAMEM

 Fully Integrated RO Membrane Facility In Asia -RO Sheet Casting & Rolling of 8, 4 & 1.8 Inch
 World Class Testing Facility - Raw material & finished Product with In-House R&D
 Manufacture-Low Energy membrane,Brackish High Rejection (HR),Fouling Resistant, Sea Water & Nano Filtration

www.hydramem.com

Drivers

- Intensified fresh water scarcity-Uneven supply & Climate Change
- Stricter regulation for waste water disposal
- Corporate Social Responsibility (CSR)/Public Environmental Awareness
- Raw water costs getting expensive
- Rapid Population growth & Urbanization
- ISO 14001/50001
- High costs of waste water disposal
- Deteriorating Water Quality-Pollution & over exploitation of Aquifers

Benefits

- Product Recovery
- Compliance to Environmental regulation
- Augment water supply
- Savings on fresh water
- Protect the Environment

Best Practices towards Water Sustainability

Resulting to think in terms of :

- I. Water audits (for Usage Optimization)
- II. Emerging alternate sources- Waste Water Recycle, (Industrial & domestic), Zero liquid discharge (ZLD) & Desalination

- Raw water scarcity
- Raw water costs are high (Rs.25 -150 / m3)
- Strict discharge regulations

Common Platform for the Problem Definition

Understanding the Problem - Quality &

Leaks

Further made even more challenging by :

- Extreme Events (Winter Chill, Climate Change)
- **Extra-ordinary Rain fall**
- Industrial Leaks/Discharges
- Urbanisation, Mega Cities: (sheer pop. density) •
- Massive social changes!

Contamination

Source Water

Domestic Waste Water Generation-Sustainable Source

Affordable & Easily available Infinite source of water Commercial Complexes IT Parks Residential Domestic Water Can be recycled for Industry Not complex in terms of requirements & domestic **Hospital** contaminants Hotel requirements Page 12 of 36

Industrial Waste water-An Alternate of Source

Refinery **Huge Quantity** Distillery Generated Power Steel Textile Industrial Water F&B Sugar Pharma Can be recycled & use Paper for high / low end Only 20% is Auto **Chemical** recycled for reuse applications

Some are Complex in Nature but treatable

Page 13 of 36

The General Process Flow – Wastewater treatment

2

CION EXCHANGE

Refreshing the Planet

Page 14 of 36

The General Process Flow

ION EXCHANGE

Refreshing the Planet

Importance of Waste Characterisation / Stream

0

S. No.	PARAMETER	Rice washing 4am	Dal wash 4am	Starch 8am	Floor washing 11am	Vessel washing 11am	Vegetable washing 11am	Vessel wash 4pm	Sewage
1	Flow Volume CuM	3	3	30	55	60	5	25	55
2	рН	7.00	6.59	5.85	7.13	5.58	6.42	5.83	6.5-8.0
3	Conductivity (ms)	1,753	2,900	1,053	926	1,524	1,035	1,004	
4	TSS (ppm)	8,618	5,622	19,420	6,734	918	1,948	2,004	
5	TDS (ppm)	3,340	5,580	13,790	620	1,240	800	660	400
6	Without filter COD	7,360	13,120	32,800	592	1,200	512	2,688	
7	Filtered COD (ppm)	4,720	6,400	<mark>27,200</mark>	336	560	244	496	
8	Without filter BOD	900	2,933	17,667	259	500	210	633	250
9	Filtered BOD (ppm)	650	2,267	<mark>6,167</mark>	94	222	95	265	
10	Oil &Grease(ppm)	>10	>10	>10	265	330	>10	738	

- Energy & Treatment efficiency
- Ability to handle varying demands (both Hydraulic & other Loads)
- Stable Treatment Quality & Process Flexibility
- Data Analysis > Process Value Predictions > Model Predictive Controls
- Waste Minimisation Sludge Volumes, Back wash Volumes, Chemical consumption
- Cost CAPEX & OPEX
- Lesser reliance on Manual intervention, self learning
- Membrane Technologies- UF, RO, NF, AMBC/FO, EDR, Membrane distillation
- De-salination New membranes (FO, Brine mining), new thermal processes
- Speciality Chemicals, for improving performance of Membranes, dis-infection
- Enzymes, Micro-biology, Engineered Eco-systems > Improved Wastewater treatment
- Cloud based optimisation, AI & Data analytics platforms KPI tracking
- Waste to Energy, product recovery from waste.

Technologies

Waste Water treatment - Innovative technologies

- 0

0

Physico Chemical	Biological Treatment	Recycle System	ZLD	
Ultra High Rate Solid Contact Clarifier (UHRSCC)	Aerobic Process	Membrane Processes	✤Multiple Effect	
Multimedia filters (MMF)	Extended Aeration	 ✤ Ultra filtration 	Evaporators (MEE)	
♦ Continous Sand filter (Disc Filters) /Self Cleaning	 High Rate FMR/ MBBR Sequential Batch 	 MBR-IPC membrane Nano Filtration 	Mechanical Vapour Recompression (MVR)	
Bio-filters	reactor 	 ◆Reverse Osmosis(RO) ✓ Spiral Membrane 	* Dryers	
*Advanced Oxidation-		✓ Disc & Tube Membrane	Agitated Thin Film Dryer (ATFD) Centrifuge (Pusher)	
system		*AMBC/Forward Osmosis		
*Ceramic Filters	◆ UASB-Tall Reactors	(FO)		

COMPARISON OF DIFFERENT STP TECHNOLOGIES

Page 19 of 36

NEW GENERATION SEWAGE TREATMENT PLANT (NG PSTP)

- All in one package (Single Tank design)
- Minimal site work (Factory assembled)
- Low power consumption (0.75kwh/m3)
- 3- months sludge storage capacity
- Suitable for 10 100 m3/day capacity

AV

NEW GENERATION SEWAGE TREATMENT PLANT (NG PSTP)

FLUIDISED MEDIA REACTOR (FMR)

0.

Membrane Bio Reactor-Integrated Permeate Channel (IPC)

Integrated

Permeate Channel

- IPC MBR is an innovation in MBR Technology
- It combines the advantages of flat sheet and hollow fiber membrane systems while eliminating the disadvantages of flat sheet MBR
- Back-washable membrane with a delta P> 2 bar -Transpressure

MEMBRANE BIO REACTOR-IPC MBR

0

IPC MBR Plant Performance

Parameter	Units	Raw sewage to Pilot plant		Treated Sev (After Indion	Reduction	
		Actual	Design	Actual	Design	70
рН		6.0 - 8.3	6.5 - 7.5	7	6.5 - 7.5	
TSS	ppm	58 – 918	150 – 200	*BDL	< 1	~ 100%
COD	ppm	121 - 812	400 - 500	18	< 30	> 94 %
BOD	ppm	71 – 415	250 - 300	*BDL	< 10	~ 100%
ТКМ	ppm	22	40 – 50	1.3 - 4.5	< 5	> 85 %
Turbidity	NTU	240 – 295		3-5		
Color		Turbid		Colorless & Odorless		
Total Bacterial Count	Cfu/ml	> Log 9	-	<u>Bacteria -6log</u> <u>Virus -3 log</u> 6 log for Bacteria		

0

FEED (RAW) SEWAGE & INDION MBR (TREATED SEWAGE)

Integrated Waste Management to Resource system

- <u>Heat Energy</u> (Commercial Application)
- <u>Electrical Energy</u> (Commercial Application)
 - Can work as standalone system (decentralised) or can work along with the Grid taking Net-Metering into account
 - Can be hybridised along with the existing Solar Rooftop
 Projects of the Client
- <u>Bio-CNG</u> (replacing LPG cylinders)
- **<u>Organic Manure</u>** (Agriculture)

Integrated Waste to Energy System-Demonstration Plant

0

Page 27 of 36

Integrated Waste to Energy System-Demonstration Plant

0

0,0

0

Akshaya Patra , Hyderabad , Demonstration plant

Design Basis

- MBR STP sludge : 2000 6000 kg/day
- Kitchen waste : 900 kg/day

Biogas & Fertilizer generated from pilot plant shall be:

- Biogas production (65 % methane):
 ± 10 Nm³/h
- Gross electrical output:
 ± 20 kW/hr
- Digested sludge -Fertilizer(with 4-5% solids) : ± 493 T/year

All Membrane Brine Concentrator (AMBC)

Overcomes membrane limitations

Higher COD & TDS

- High recoveries
 - Beyond > 90-95%
- Reduces Capacity of Multi Effect Evaporator
- Can be used in existing Sea water RO to enhance recoveries
- Can be used for **product recoveries** in specific industries

Advanced recycle system –ZLD System

CON EXCHANGE Refreshing the Planet

INDION[®] Disc & Tube / Plate & Frame RO

- DTRO is flat-sheet membrane technology To treat complex water with minimal pre-treatment and foot print to produce water with lower TDS ,colloids , Organic matter & Particulate.
- Handle tough effluent -Distillery, Pharma, Textile and Chemicals Industries Higher feed COD (30,000 mg/l) and TDS (24,000 to 50,000 mg/l)
- Precursor to ZLD
 To reduce the life cycle cost of the system

FORWARD OSMOSIS (FO)

Forward Osmosis (FO) is a 'green' process which use Semi-permeable membrane to separate water from dissolved solids.

System can handle:

- High TDS (70,000 ppm 2,00,000 ppm)
- High COD/BOD (> 5000 mg/l / > 8000 mg/l)

Up to 80% recovery with permeate TDS < 50 ppm</p>

CON EXCHANGE

• HIGH RATE REACTOR-COD LOADING is 15 – 35 kg /m3.day

• UNIQUE Phase separator for Gas-Liquid

Low Maintainence

No complex internals or rotating equipment inside the reactor

Conclusion

- New technologies are available to meet all sorts of Waste water treatment challenges
- The sustainable way forward starts with basics: Understanding characteristics & efficient wastewater management. <u>This is a low hanging fruit, to ensure</u> <u>sustainability</u>.
- <u>Prior experience & detailed knowledge</u> of effluent streams is a key factor, for successful implementation of ETPs./STP.
- New technologies provide many excellent options, to <u>make a remarkable improvement</u> in quality of life of everyone.

Water is everybody's business! Together, we can make a difference.

vijay.bhaskar@ionexchange.co.in Mobile- 9884946005

www.ionexchangeglobal.com

Thank you for your Valuable time!

Page 35 of 36